TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Atps Calculo II

Ensaios: Atps Calculo II. Pesquise 860.000+ trabalhos acadêmicos

Por:   •  17/4/2014  •  1.565 Palavras (7 Páginas)  •  230 Visualizações

Página 1 de 7

ETAPA 1

Passo 1

Pesquisar o conceito de velocidade instantânea a partir do limite, com .

Comparar a fórmula aplicada na física com a fórmula usada em cálculo e explicar o significado da função v (velocidade instantânea), a partir da função s (espaço), utilizando o conceito da derivada que você aprendeu em cálculo, mostrando que a função velocidade é a derivada da função espaço.

Dar um exemplo, mostrando a função velocidade como derivada da função do espaço, utilizando no seu exemplo a aceleração como sendo a somatória do último algarismo que compõe o RA dos alunos integrantes do grupo.

Velocidade instantânea: Sabendo o conceito de velocidade média, você pode se perguntar: “Mas o automóvel precisa andar todo o percurso a uma velocidade de 60km/h?”A resposta é não, pois a velocidade média calcula a média da velocidade durante o percurso (embora não seja uma média ponderada, como por exemplo, as médias de uma prova).Então, a velocidade que o velocímetro do carro mostra é a Velocidade Instantânea do carro, ou seja, a velocidade que o carro está no exato momento em que se olha para o velocímetro.A velocidade instantânea de um móvel será encontrada quando se considerar um intervalo de tempo ( ) infinitamente pequeno, ou seja, quando o intervalo de tempo tender a zero ( ).

Por outro lado, concluímos que o módulo da velocidade média entre esses instantes de tempo pode ser obtido a partir do segmento de reta secante ao gráfico da posição em função do tempo. Esse segmento de reta deve ligar os pontos A e B do gráfico, pontos estes que correspondem aos instantes de tempo t1 e t2 .

Exemplo:Função x = 5.t²+ + t3 + 6t – 8

a) Velocidade no tempo 3s

V=d.x10t+3t²+6

d.t

V=10.3+3.3²+6

V= 63 m/s

b) Aceleração no tempo 17s

V=d.x 10t+3t²+6

d.t

a=d.v 10+6.t

d.t

a= 10+6.17

a=10+6 . 17

a= 122 m/s²

Passo 2

Montar uma tabela, usando seu exemplo acima, com os cálculos e plotenum gráfico as funções S(m) x t(s) e V(m/s) x t(s) para um intervalo entre 0 a 5s, diga que tipo de função você tem e calcular a variação do espaço percorrido e a variação de velocidade para o intervalo dado.

Calcular a área formada pela função da velocidade, para o intervalo dado acima.

Gráfico s(m) x t(s) x = 5. t²+ + t3 + 6t – 8

Gráfico v(m) x t(s) v = 10t+3t²+6

Passo 3

Pesquisar sobre a aceleração instantânea de um corpo móvel, que define a aceleração como sendo a derivada da função velocidade.

Explicar o significado da aceleração instantânea a partir da função s (espaço), mostrando que é a aceleração é a derivada segunda.

Utilizar o exemplo do Passo 1 e mostrar quem é a sua aceleração a partir do conceito de derivação aplicada a sua função espaço e função velocidade.

Aceleração instantânea da partícula no instante t é o limite dessa razão quando Δt tende a zero. Representando a aceleração instantânea por ax, temos então:

A aceleração de uma partícula em qualquer instante é a taxa na qual sua velocidade está alterando naquele instante. A aceleração instantânea é a derivada da velocidade em relação ao tempo: a = dvdt. Vamos derivar a equação da velocidade instantânea para obter a aceleração instantânea. Função da velocidade em um determinado instante.

V=V0¹-¹ + a*t¹-¹

V=1*V0¹-¹ + 1*a*t¹-¹

a=a

Podemos observar que a derivada da velocidade instantânea resulta direto na aceleração.

Passo 4

Plotar num gráfico sua função a(m/s2) x t(s) para um intervalo de 0 a 5 segundos e dizer que tipo de função você tem.

Gráfico aceleração a(m/s²) x t(s) a=10+6t

É uma função de tempo x aceleração.

ETAPA 2

PASSO 1

O que é a Constante de Euler?

Constante de Euler foi observada primeiramente pelo matemático suíço Leonhard Euler em um dos seus artigos, publicado em 1735. Euler usou a notação C para a constante e inicialmente calculou o valor até 6 casas decimais. Em 1761 Euler estendeu seus cálculos, publicando um valor com 16 casas decimais. Em 1790 o matemático italiano Lorenzo Mascheroni introduziu a notação γ para a constante, e tentou estender o cálculo de Euler ainda mais, a 32 casas decimais, apesar de cálculos subsequentes terem mostrado que ele cometera erros na 20°, 22° e 32 casas decimais. (Do 20° dígito, Mascheroni calculou 1811209008239.) (Wikipédia, 24/03/2012). Não se sabe se a constante de Euler-Mascheroni é ou não um número racional. No entanto, análises mostram que se γ for racional, seu denominador tem mais do que 10242080 dígitos (Havil, page 97).Em 1736, quando publicou o seu livro Mechanica, onde a dinâmica de Newton (1642-1727) foi apresentada de forma analítica, foi impresso pela primeira vez o número ℮. A partir deste momento, a notação do número foi facilmente aceita e adotada nos cálculos matemáticos, bem como a padronização da denominação de exponencial. A constante de Euler-Mascheroni é uma constante matemática com múltiplas utilizações em Teoria dos números. Ela é definida como o limite da diferença entre a série harmônica e o logaritmo natural.

que pode ser condensada assim : em que E(x) é a parte inteira de x.]

Resumidamente

...

Baixar como (para membros premium)  txt (10.5 Kb)  
Continuar por mais 6 páginas »
Disponível apenas no TrabalhosGratuitos.com