TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

RESPIRAÇÃO DE CÉLULAS

Relatório de pesquisa: RESPIRAÇÃO DE CÉLULAS. Pesquise 860.000+ trabalhos acadêmicos

Por:   •  17/11/2014  •  Relatório de pesquisa  •  2.361 Palavras (10 Páginas)  •  160 Visualizações

Página 1 de 10

RESPIRAÇÃO CELULAR

Introdução

Todas as células vivas possuem uma elevada organização interna que é composta pela associação de substâncias orgânicas e inorgânicas. O estado de organização interna não é espontâneo nem permanente; e, por ser instável, pode reverter muito facilmente ao estado inanimado. O que mantém as características que diferem o vivo do não-vivo é uma entrada constante de energia. Segundo a Termodinâmica, há duas formas de energia: a energia livre ou utilizável. a entropia ou energia não utilizável.

Em qualquer transformação de energia, a energia livre (mais organizada e concentrada) tende a passar para uma forma menos organizada e menos concentrada, a entropia. As células precisam de energia para não se desestruturarem e para promoverem seus processos mecânicos, elétricos, osmóticos, bioquímicos.

Mas, ao utilizar esta energia, a célula a desorganiza e a dissipa, de modo que não pode voltar a usá-la. Portanto, as células, como unidades metabólicas, precisam de um fluxo de energia exterior que venha de uma fonte até elas. Pela natureza destas fontes, dividimos os seres vivos em autótrofos e heterótrofos. Os autótrofos têm a capacidade metabólica de sintetizarem, para o seu sustento, moléculas orgânicas a partir de substâncias inorgânicas de baixo peso molecular, como a água e o gás carbônico.

A fotossíntese é um exemplo de processo anabólico realizado por seres autótrofos. Os seres heterótrofos não têm esta capacidade metabólica e por isso precisam obter matéria orgânica pronta para sua nutrição.

Catabolismo e Anabolismo

A degradação de compostos orgânicos com a finalidade de obtenção de energia é denominada catabolismo. O catabolismo libera energia química potencial, parte da qual toma a forma de calor. Já o conjunto de reações que sintetizam matéria orgânica e protoplasma é conhecido como anabolismo. A síntese de proteínas é exemplo de atividade anabólica importante nos processos de crescimento, substituição tecidual e desenvolvimento do ser vivo. A fotossíntese também é um importantíssimo processo bioquímico anabólico.

O catabolismo libera energia química, parte da qual toma a forma de calor. Um adulto de peso normal consome cerca de 2.500 kcal por dia. Esta energia é necessária para a contração muscular, para o transporte de substâncias e íons através da membrana plasmática, para a produção de proteínas, enzimas e ácidos nucleicos, etc. Por exemplo, a formação de uma ligação peptídica necessita de 0,5 a 4 kcal de energia, dependendo dos aminoácidos que serão ligados quimicamente.

Um processo muito generalizado entre os seres vivos (desde bactérias até mamíferos) de obtenção de energia é a oxidação da glicose até dióxido de carbono e água. Se a glicose fosse queimada num forno, sua total oxidação liberaria 686 kcal/mol. Nas células, a oxidação da glicose ocorre em etapas, sendo um processo parcelado de degradação.

Deste modo, a glicose é quebrada por uma série de reações bioquímicas, envolvendo um quantitativo numeroso de enzimas e produzindo uma série igualmente numerosa de compostos intermediários. Durante a oxidação da glicose, a energia é tranferida para nucleotídios fosforilados: o trifosfato de guanosina (GTP), o trifosfato de citosina (CTP), o trifosfato de uracila (UTP) e o trifosfato de adenosina (ATP). Destes, o mais importante é o ATP. Os outros nucleotídios fosforilados são convertidos em ATP.

A coenzima A, também um nucleotídio, é substância importante nos processos oxidativos da glicose. A figura a seguir (retirada de Alberts et al., 1997, p. 59) representa a fórmula estrutural do trifosfato de adenosina e da coenzima A.

Adenosina Trifosfato

O ATP é o nucleotídio trifosfatado mais importante. Ele participa das inúmeras reações e processos metabólicos relacionados à transferência e conversão de tipos de energia. A hidrólise do radical fosfato terminal do ATP, formando difosfato de adenosina (ADP) e fosfato inorgânico, libera energia livre de 7,3 kcal/mol, quantidade apropriada para as funções celulares.

A energia do ATP é disponibilizada para as células pelo acoplamento da hidrólise desta substância a reações químicas que requeiram energia. No hialoplasma, existe apenas uma pequena reserva de ATP, de tal maneira que, à medida que ele é utilizado, deve ser reposto por meio de reações que fosforilam o ADP a ATP. Existem dois mecanismos de regeneração do ATP.

O primeiro é a fosforilação pelo nível de substrato, em que um radical fosfato é transferido para o ADP por um composto intermediário, a fim de formar o ATP. Este tipo de fosforilação pode ocorrer na ausência de oxigênio, condição denominada de metabolismo anaeróbico.

Como exemplo deste tipo de fosforilação, temos: a glicólise (primeira etapa da respiração celular) e a fermentação. O segundo mecanismo de produção de ATP é a fosforilação oxidativa, que ocorre nas membranas internas das organelas denominadas mitocôndrias, e que exige a presença de oxigênio molecular.

A fosforilação oxidativa produz a maior parte do ATP utilizado pelo organismo. O conjunto das reações que compõem a fosforilação oxidativa é chamado metabolismo aeróbico.

Carreadores de elétrons: NAD e FAD

As reações metabólicas que degradam a glicose e obtêm energia para a célula são do tipo oxidação-redução (também denominada oxirredução). Quando um composto químico (molécula, íon) perde elétron ou higrogênio, diz-se que houve oxidação. Ao contrário, se uma espécie química ganha elétron ou hidrogênio, observa-se uma redução.

A maior parte da energia da glicose é retirada por meio de reações de oxirredução. Nestas reações participam substâncias conhecidas como coenzimas. As mais importantes coenzimas carreadoras de elétrons são o dinucleotídio de nicotinamida-adenina e o dinucleotídio de flavina-adenina. As formas oxidadas dessas coenzimas são abreviadas por NAD+ e FAD+; as formas reduzidas são NADH e FADH2.

A coenzima A transfere radicais acetil e será comentada mais adiante. A figura a seguir (retirada de Alberts et al., 1997, p. 71) mostra, em (A), a estrutura do NAD em estado oxidado e estado reduzido; e em (B), a transferência de hidrogênio de uma cadeia carbônica para o NAD oxidado (NAD+).

Glicólise

A

...

Baixar como (para membros premium)  txt (15.5 Kb)  
Continuar por mais 9 páginas »
Disponível apenas no TrabalhosGratuitos.com