TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Descoberta Raio - X

Dissertações: Descoberta Raio - X. Pesquise 860.000+ trabalhos acadêmicos

Por:   •  1/11/2013  •  2.741 Palavras (11 Páginas)  •  243 Visualizações

Página 1 de 11

Tubo de raios X

Em uma ampola de vidro, William Crookes submeteu um gás a pressão ambiente e a altas tensões, por meio de duas placas metálicas localizadas no fundo e na frente da ampola, cada qual carregada com cargas diferentes. Quando a diferença de potencial entre as placas era suficientemente grande, os elétrons saiam do cátodo (placa carregada negativamente), colidiam com moléculas do gás, ocorrendo a sua ionização e/ou liberação de luz devido às transições eletrônicas dos átomos do gás, iluminando assim, toda a ampola.

O tubo de vidro é evacuado a uma pressão de ar, de cerca de 100 Pascais; lembre-se que a pressão atmosférica é 10 × 105 Pascais. O ânodo é um alvo metálico grosso, é assim feito a fim de dissipar rapidamente a energia térmica que resulta do bombardeamento com os raios catódicos.

Uma tensão alta, entre 30 a 150 kV, é aplicada entre os elétrodos; isso induz uma ionização do ar residual e, assim, um feixe de electrões do cátodo ao ânodo surge. Quando esses electrões acertam o alvo, eles são desacelerados, produzindo os raios-X.

O efeito de geração dos fotões de raios-X é geralmente chamado efeito Bremsstrahlung, uma contração do alemão "brems" para a travagem e "strahlung" para aradiação.

A energia de radiação de um tubo de raio-X consiste de energias discretas que constituem um espectro de linha e um espectro contínuo fornecendo o fundo o espectro de linha.

Os electrões incidentes podem interagir com os átomos do alvo de várias maneiras.

A partir desses experimentos, Joseph John Thomson observou que tal fenômeno é independente do gás e do metal utilizado nos eletrodos (placas metálicas).

Concluiu, então, que os raios catódicos podem ser gerados a partir de qualquer elemento químico. Devido a essa conclusão, Thomson pôde, posteriormente, atestar a existência do elétron.

Muitos cientistas na Europa começaram a estudar esse tipo de radiação. Entre eles, o maior especialista em raios catódicos da Alemanha, Philipp Lenard (1862-1947).1

A descoberta

Hand mit Ringen: a primeira de Wilhelm Röntgen referente a mão de sua esposa, tirada em 22 de dezembro de 1895 e apresentada ao Professor Ludwig Zehnder, do Instituto de Física da Universidade de Freiburg, em 1 de janeiro de 1896.

Foi o físico alemão Wilhelm Conrad Röntgen (1845-1923) quem detectou pela primeira vez os raios X, que foram assim chamados devido ao desconhecimento, por parte da comunidade científica da época, a respeito da natureza dessa radiação. A descoberta ocorreu quando Röentgen estudava o fenômeno da luminescência produzida por raios catódicos num tubo de Crookes. Todo o aparato foi envolvido por uma caixa com um filme negro em seu interior e guardado numa câmara escura. Próximo à caixa, havia um pedaço de papel recoberto de platinocianeto de bário.

Röentgen percebeu que quando fornecia energia cinética aos elétrons do tubo, estes emitiam uma radiação que marcava a chapa fotográfica. Intrigado, resolveu colocar entre o tubo de raios catódicos e o papel fotográfico alguns corpos opacos à luz visível. Desta forma, observou que vários materiais opacos à luz diminuíam, mas não eliminavam a chegada desta estranha radiação até a placa de platinocianeto de bário. Isto indicava que a radiação possui alto poder de penetração. Após exaustivas experiências com objetos inanimados, Röntgen pediu à sua esposa que posicionasse sua mão entre o dispositivo e o papel fotográfico.

O resultado foi uma foto que revelou a estrutura óssea interna da mão humana. Essa foi a primeira radiografia, nome dado pelo cientista à sua descoberta em 8 de novembro de 1895. Posteriormente à descoberta do novo tipo de radiação, cientistas perceberam que esta causava vermelhidão da pele, ulcerações e empolamento para quem se expusesse sem nenhum tipo de proteção. Em casos mais graves, poderia causar sérias lesões cancerígenas, necrose e leucemia, e então à morte.

Partícula ou onda

Logo que os raios X foram descobertos, pouco se sabia a respeito da sua constituição. No início do século XX foram encontradas evidências experimentais de que os raios X seriam constituídos por partículas. No entanto, e para a surpresa da comunidade científica, Walther Friedrich e Paul Knipping realizaram um experimento em 1912, no qual conseguiram fazer um feixe de raios X atravessar um cristal, produzindo interferência da mesma forma que acontece com a luz. Isto fez com que os raios X passassem a ser considerados como ondas eletromagnéticas. Porém, por volta de 1920 foram realizados outros experimentos, que apontavam para um comportamento corpuscular dos raios X.

O físico Louis de Broglie tentou resolver este aparente conflito no comportamento dos raios X. Combinando as equações de Planck e de Einstein (E = h.ν = m.c²), chegou a conclusão de que "tudo o que é dotado de energia vibra, e há uma onda associada a qualquer coisa que tenha massa".

Produção

O dispositivo que gera raios X é chamado de tubo de Coolidge. Da mesma forma que uma válvula termiônica, este componente é um tubo oco e evacuado, ainda possui um catodo incandescente que gera um fluxo de elétrons de alta energia. Estes são acelerados por uma grande diferença de potencial e atingem ao ânodo ou placa.

O ânodo é confeccionado em tungstênio. A razão deste tipo de construção é a geração de calor pelo processo de criação dos raios X. O tungstênio suporta temperaturas que vão até 3340 °C. Além disso, possui um razoável valor de número atômico (74) o que é útil para o fornecimento de átomos para colisão com os elétrons vindos do catodo (filamento). Para não fundir, o dispositivo necessita de resfriamento através da inserção do tungstênio em um bloco de cobre que se estende até o exterior do tubo de raios X que está imerso em óleo. Esta descrição refere-se ao tubo de ânodo fixo.

Ao serem acelerados, os elétrons ganham energia e são direcionados contra um alvo; ao atingi-lo, são bruscamente freados, perdendo uma parte da energia adquirida durante a aceleração. O resultado das colisões e da frenagem é a energia transferida dos elétrons para os átomos do elemento alvo. Este se aquece bruscamente, pois em torno de 99% da energia do feixe eletrônico é dissipada nele.

A brusca desaceleração de uma carga eletrônica gera a emissão de um pulso de radiação eletromagnética. A este efeito dá-se o nome de Bremsstrahlung, que significa radiação

...

Baixar como (para membros premium)  txt (17.8 Kb)  
Continuar por mais 10 páginas »
Disponível apenas no TrabalhosGratuitos.com