TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Física - Gases

Casos: Física - Gases. Pesquise 859.000+ trabalhos acadêmicos

Por:   •  18/2/2015  •  1.552 Palavras (7 Páginas)  •  188 Visualizações

Página 1 de 7

Gás e Vapor

A diferença entre gás e vapor é dada a partir da temperatura crítica. O vapor é a matéria no estado gasoso, estado esse que pode ser liquefeito com o aumento da pressão. Com o gás não ocorre o mesmo. Ele é um fluido impossível de ser liquefeito com um simples aumento de pressão. Isso faz com o gás seja diferente do vapor.

Comportamento dos Gases

Uma determinada substância no estado gasoso é um gás se a sua temperatura for superior à temperatura crítica, se a temperatura for igual ou inferior à temperatura crítica a substância é vapor.

Os gases reais que normalmente conhecemos como, por exemplo, o hélio, o nitrogênio e o oxigênio, apresentam características moleculares diferentes e particulares de cada um. Contudo, se colocarmos todos eles a altas temperaturas e baixas pressões eles passam a apresentar comportamentos muito semelhantes. No estudo dos gases adota-se um modelo teórico, simples e que na prática não existe, com comportamento aproximado ao dos gases reais. Essa aproximação é cada vez melhor quanto menor for à pressão e maior a temperatura. Esse modelo de gás é denominado de gás perfeito.

Por volta do século XVII e XIX, três cientistas (Jacques Charles, Louis J. Gay-Lussac e Paul E. Clayperon), após estudarem o comportamento dos gases, elaboraram leis que regem o comportamento dos gases perfeitos, também chamados de gases ideais. As leis por eles determinadas estabelecem as regras do comportamento “externo” do gás perfeito, levando em conta apenas as grandezas físicas que estão associadas a eles, grandezas essas que são: volume, temperatura e pressão.

Gases se apresentam como moléculas ou átomos isolados.

As leis da termodinâmica

As principais definições de grandezas termodinâmicas constam de suas leis:

•A lei zero é a que define a temperatura

•A primeira lei da termodinâmica (calor, trabalho mecânico e energia interna) é a do princípio da conservação da energia.

•A segunda lei define entropia e fornece regras para conversão de energia térmica em trabalho mecânico.

•E a terceira lei aponta limitações para a obtenção do zero absoluto de temperatura.

Lei zero da termodinâmica

Embora a noção de quente e frio pelo contato com a pele seja de uso corrente, ela pode levar a avaliações erradas de temperatura. De qualquer forma, é da observação cotidiana dos corpos quentes e frios que se chega ao conceito de temperatura. Levando em conta essas observações, assim postulou-se a lei zero: se A e B são dois corpos em equilíbrio térmico com um terceiro corpo C, então A e B estão em equilíbrio térmico um com o outro, ou seja, a temperatura desses sistemas é a mesma.

Primeira lei da termodinâmica

A lei de conservação de energia aplicada aos processos térmicos é conhecida como primeira lei da termodinâmica. Ela dá a equivalência entre calor e trabalho e pode enunciar-se da seguinte maneira: "em todo sistema quimicamente isolado em que há troca de trabalho e calor com o meio externo e em que, durante essa transformação, realiza-se um ciclo (o estado inicial do sistema é igual a seu estado final), as quantidades de calor (Q) e trabalho (W) trocadas são iguais. Assim, chega-se à expressão W = JQ, em que J é uma constante que corresponde ao ajuste entre as unidades de calor (usada na medida de Q) e Joule (usada na medida de W). Essa constante é empregada na própria definição de caloria (1 cal = 4,1868J).

A primeira lei da termodinâmica pode ser enunciada também a partir do conceito de energia interna, entendida como a energia associada aos átomos e moléculas em seus movimentos e interações internas ao sistema. Essa energia não envolve outras energias cinéticas e potenciais, que o sistema como um todo apresenta em suas relações com o exterior.

A variação da energia interna DU é medida pela diferença entre a quantidade de calor (Q), trocado pelo sistema com seu exterior, e o trabalho realizado (W) e é dada pela expressão DU = K - W , que corresponde ao enunciado da lei da termodinâmica. É comum no estudo das transformações o uso da função termodinâmica da entalpia (H), definida pela relação H = U + PV, em que U é a energia interna, p é a pressão e V é o volume do sistema. Num processo em que só existe trabalho de expansão (como, por exemplo, na fusão sob pressão e temperatura constante), a entalpia é a medida do calor trocado entre o sistema e seu exterior.

A relação entre a variação DQ e o aumento correspondente de temperatura Dt , no limite, quando Dt tende a zero, é chamada capacidade calorífica do sistema:

C = DQ/Dt

O calor específico é igual à capacidade calorífica dividida pela massa do sistema:

C = 1 D Q / m Dt

Tanto o calor específico quanto a capacidade calorífica do sistema dependem das condições pelas quais foi absorvido ou retirado calor do sistema.

Segunda lei da termodinâmica

A tendência do calor a passar de um corpo mais quente para um mais frio, e nunca no sentido oposto, a menos que exteriormente comandado, é enunciada pela segunda lei da termodinâmica. Essa lei nega a existência do fenômeno espontâneo de transformação de energia térmica em energia cinética, que permitiria converter a energia do meio aquecido para a execução de um movimento (por exemplo, mover um barco com a energia resultante da conversão da água em gelo).

De acordo com essa lei da termodinâmica, num sistema fechado, a entropia nunca diminui. Isso significa que, se o sistema está inicialmente num estado de baixa entropia (organizado), tenderá espontaneamente a um estado de entropia máxima (desordem). Por exemplo, se dois blocos de metal a diferentes temperaturas são postos em contato térmico, a desigual distribuição de temperatura rapidamente dá lugar a um estado de temperatura uniforme à medida que a energia flui do bloco mais quente para o mais frio. Ao atingir esse estado, o sistema está

...

Baixar como (para membros premium)  txt (9.8 Kb)  
Continuar por mais 6 páginas »
Disponível apenas no TrabalhosGratuitos.com